Research

What Research Is Being Done for Balance Disorders?

Scientists are working to understand the various balance disorders and the complex interactions between the labyrinth, other balance-sensing organs, and the brain. Scientists are studying eye movement to understand the changes that occur in aging, disease, and injury. Scientists are collecting data about eye movement and posture to improve diagnosis and treatment of balance disorders. Scientists are also studying the effectiveness of certain exercises as a treatment option.

Recent findings from studies supported by the National Institute on Deafness and Other Communication Disorders (NIDCD) suggest that the vestibular system plays an important role in modulating blood pressure. The information from these studies has potential clinical relevance in understanding and managing orthostatic hypotension (lowered blood pressure related to a change in body posture). Other studies of the otolithic organs, the detectors of linear movement, are exploring how these organs differentiate between downward (gravitational) motion from linear (forward-to-aft, side-to-side) motion.

Other projects supported by NIDCD include studies of the genes essential to normal development and function in the vestibular system. Scientists are also studying inherited syndromes of the brain that affect balance and coordination.

The Institute supports research to develop new tests and refine current tests of balance and vestibular function. For example, scientists have developed computer-controlled systems to measure eye movement and body position by stimulating specific parts of the vestibular and nervous systems. Other tests to determine disability, as well as new physical rehabilitation strategies, are under investigation in clinical and research settings.

NIDCD, along with other Institutes at the National Institutes of Health, joined the National Aeronautics and Space Administration (NASA) for Neurolab, a research mission dedicated to the study of life sciences. Neurolab focused on the most complex and least understood part of the human body, the nervous system (including the balance system).

Exposure to the weightlessness of space is known to temporarily disrupt balance on return to Earth and to gravity. A team of NIDCD and NASA investigators had previously studied the effects of microgravity exposure on balance control in astronauts who had returned from short-duration space flight missions, but these studies did not include an aged individual. During the October 29-November 7, 1998, Space Shuttle Discovery mission, NIDCD and NASA collaborated in another study of postflight balance control. For the first time, a previously experienced, but now elderly astronaut, Senator John Glenn, participated. Data collected during this mission, which are still being analyzed, may help to explain the mechanisms of recovery from balance disorders experienced on Earth as well as in the space environment. Scientists also hope that this data will help to develop strategies to prevent injury from falls, a common occurrence among people with balance disorders, particularly as they grow older.